The problem of constrained linear least squares is usually stated in following way:
$$\min_x \; \frac12\|Cx-d\|_2^2 + \lambda \|x\|_2^2, $$ $$s.t. \;\; Ax \leq a, \;\;\; Bx = b. $$
using the fact that $\|x\|_2^2 = x^\top x$: $$\frac12\|Cx-d\|_2^2 + \lambda \|x\|_2^2 = \frac12 (Cx - d)^\top(Cx-d) + \lambda x^\top x =$$ $$=\frac12(x^\top C^\top - d^\top)(Cx-d) + \lambda x^\top I x = \frac12 x^\top (C^\top Cx + \lambda I)x - d^\top Cx + \frac12 d^\top d.$$ While minimizing over $x$ we don't care about $d^\top d$, taking $Q = C^\top C + \lambda I$, and $r=d^\top C$ we can rewrite our initial optimization problem as follows:$$\min_x \; \frac12 x^\top Qx + rx, $$ $$s.t. \;\; Ax \leq a, \;\;\; Bx = b. $$
Now it is obvious, that we have formulated a quadratic program, that can be solved by cvxopt.solvers.qp. Stacking box inequality constraints(Matlab notation lb and ub such that lb<=x<=ub) to matrix $A$ and vector $a$, we can fully emulate lsqlin and lsqnonneg with sparse and dense matrices. Testing lsqnonneg:Here is Matlab reference code:
C = [0.0372, 0.2869; 0.6861, 0.7071; ...
0.6233, 0.6245; 0.6344, 0.6170];
d = [0.8587, 0.1781, 0.0747, 0.8405]';
x = lsqnonneg(C, d)
% output:
% x = [0, 0.6929]
And here is Python code:
import lsqlin
import numpy as np
C = np.array([[0.0372, 0.2869], [0.6861, 0.7071], \
[0.6233, 0.6245], [0.6344, 0.6170]]);
d = np.array([0.8587, 0.1781, 0.0747, 0.8405]);
ret = lsqlin.lsqnonneg(C, d, {'show_progress': False})
print ret['x'].T
#output:
#[ 2.50e-07 6.93e-01]
So it works perfectly! Disregard tiny value of x[0]=2.5e-07 this can be fixed, by imposing small regularization.
Testing lsqlin:
Matlab reference code:
C = [0.9501 0.7620 0.6153 0.4057
0.2311 0.4564 0.7919 0.9354
0.6068 0.0185 0.9218 0.9169
0.4859 0.8214 0.7382 0.4102
0.8912 0.4447 0.1762 0.8936];
d = [0.0578, 0.3528, 0.8131, 0.0098, 0.1388]';
A =[0.2027 0.2721 0.7467 0.4659
0.1987 0.1988 0.4450 0.4186
0.6037 0.0152 0.9318 0.8462];
b =[0.5251, 0.2026, 0.6721]';
lb = -0.1*ones(4,1);
ub = 2*ones(4,1);
x = lsqlin(C, d, A, b, [], [], lb, ub)
% output:
% x = [-0.1000, -0.1000, 0.2152, 0.3502]
Python code:
import lsqlin
import numpy as np
C = np.array(np.mat('''0.9501,0.7620,0.6153,0.4057;
0.2311,0.4564,0.7919,0.9354;
0.6068,0.0185,0.9218,0.9169;
0.4859,0.8214,0.7382,0.4102;
0.8912,0.4447,0.1762,0.8936'''))
A = np.array(np.mat('''0.2027,0.2721,0.7467,0.4659;
0.1987,0.1988,0.4450,0.4186;
0.6037,0.0152,0.9318,0.8462'''))
d = np.array([0.0578, 0.3528, 0.8131, 0.0098, 0.1388])
b = np.array([0.5251, 0.2026, 0.6721])
lb = np.array([-0.1] * 4)
ub = np.array([2] * 4)
ret = lsqlin.lsqlin(C, d, 0, A, b, None, None, \
lb, ub, None, {'show_progress': False})
print ret['x'].T
# output:
# [-1.00e-01 -1.00e-01 2.15e-01 3.50e-01]
Seems to work fine as well.
For sparse matrices in my case(about hundreds columns, tens thousands rows, 3 non-zero elements in each row) both Matlab and Python provided same solutions, and Python implementation seemed to work a bit faster. However I can not provide any timings or memory consumption test. Just hope it can help somebody someday.
lsqlin.py can be downloaded from here, or just copypasted from below. You can use numpy dense matrices, scipy sparse matrices or cvxopt matrices as inputs. Module is documented:
#!/usr/bin/python
# See http://maggotroot.blogspot.ch/2013/11/constrained-linear-least-squares-in.html for more info
'''
A simple library to solve constrained linear least squares problems
with sparse and dense matrices. Uses cvxopt library for
optimization
'''
__author__ = 'Valeriy Vishnevskiy'
__email__ = 'valera.vishnevskiy@yandex.ru'
__version__ = '1.0'
__date__ = '22.11.2013'
__license__ = 'WTFPL'
import numpy as np
from cvxopt import solvers, matrix, spmatrix, mul
import itertools
from scipy import sparse
def scipy_sparse_to_spmatrix(A):
coo = A.tocoo()
SP = spmatrix(coo.data, coo.row.tolist(), coo.col.tolist())
return SP
def spmatrix_sparse_to_scipy(A):
data = np.array(A.V).squeeze()
rows = np.array(A.I).squeeze()
cols = np.array(A.J).squeeze()
return sparse.coo_matrix( (data, (rows, cols)) )
def sparse_None_vstack(A1, A2):
if A1 is None:
return A2
else:
return sparse.vstack([A1, A2])
def numpy_None_vstack(A1, A2):
if A1 is None:
return A2
else:
return np.vstack([A1, A2])
def numpy_None_concatenate(A1, A2):
if A1 is None:
return A2
else:
return np.concatenate([A1, A2])
def get_shape(A):
if isinstance(C, spmatrix):
return C.size
else:
return C.shape
def numpy_to_cvxopt_matrix(A):
if A is None:
return A
if sparse.issparse(A):
if isinstance(A, sparse.spmatrix):
return scipy_sparse_to_spmatrix(A)
else:
return A
else:
if isinstance(A, np.ndarray):
if A.ndim == 1:
return matrix(A, (A.shape[0], 1), 'd')
else:
return matrix(A, A.shape, 'd')
else:
return A
def cvxopt_to_numpy_matrix(A):
if A is None:
return A
if isinstance(A, spmatrix):
return spmatrix_sparse_to_scipy(A)
elif isinstance(A, matrix):
return np.array(A).squeeze()
else:
return np.array(A).squeeze()
def lsqlin(C, d, reg=0, A=None, b=None, Aeq=None, beq=None, \
lb=None, ub=None, x0=None, opts=None):
'''
Solve linear constrained l2-regularized least squares. Can
handle both dense and sparse matrices. Matlab's lsqlin
equivalent. It is actually wrapper around CVXOPT QP solver.
min_x ||C*x - d||^2_2 + reg * ||x||^2_2
s.t. A * x <= b
Aeq * x = beq
lb <= x <= ub
Input arguments:
C is m x n dense or sparse matrix
d is n x 1 dense matrix
reg is regularization parameter
A is p x n dense or sparse matrix
b is p x 1 dense matrix
Aeq is q x n dense or sparse matrix
beq is q x 1 dense matrix
lb is n x 1 matrix or scalar
ub is n x 1 matrix or scalar
Output arguments:
Return dictionary, the output of CVXOPT QP.
Dont pass matlab-like empty lists to avoid setting parameters,
just use None:
lsqlin(C, d, 0.05, None, None, Aeq, beq) #Correct
lsqlin(C, d, 0.05, [], [], Aeq, beq) #Wrong!
'''
sparse_case = False
if sparse.issparse(A): #detects both np and cxopt sparse
sparse_case = True
#We need A to be scipy sparse, as I couldn't find how
#CVXOPT spmatrix can be vstacked
if isinstance(A, spmatrix):
A = spmatrix_sparse_to_scipy(A)
C = numpy_to_cvxopt_matrix(C)
d = numpy_to_cvxopt_matrix(d)
Q = C.T * C
q = - d.T * C
nvars = C.size[1]
if reg > 0:
if sparse_case:
I = scipy_sparse_to_spmatrix(sparse.eye(nvars, nvars,\
format='coo'))
else:
I = matrix(np.eye(nvars), (nvars, nvars), 'd')
Q = Q + reg * I
lb = cvxopt_to_numpy_matrix(lb)
ub = cvxopt_to_numpy_matrix(ub)
b = cvxopt_to_numpy_matrix(b)
if lb is not None: #Modify 'A' and 'b' to add lb inequalities
if lb.size == 1:
lb = np.repeat(lb, nvars)
if sparse_case:
lb_A = -sparse.eye(nvars, nvars, format='coo')
A = sparse_None_vstack(A, lb_A)
else:
lb_A = -np.eye(nvars)
A = numpy_None_vstack(A, lb_A)
b = numpy_None_concatenate(b, -lb)
if ub is not None: #Modify 'A' and 'b' to add ub inequalities
if ub.size == 1:
ub = np.repeat(ub, nvars)
if sparse_case:
ub_A = sparse.eye(nvars, nvars, format='coo')
A = sparse_None_vstack(A, ub_A)
else:
ub_A = np.eye(nvars)
A = numpy_None_vstack(A, ub_A)
b = numpy_None_concatenate(b, ub)
#Convert data to CVXOPT format
A = numpy_to_cvxopt_matrix(A)
Aeq = numpy_to_cvxopt_matrix(Aeq)
b = numpy_to_cvxopt_matrix(b)
beq = numpy_to_cvxopt_matrix(beq)
#Set up options
if opts is not None:
for k, v in opts.items():
solvers.options[k] = v
#Run CVXOPT.SQP solver
sol = solvers.qp(Q, q.T, A, b, Aeq, beq, None, x0)
return sol
def lsqnonneg(C, d, opts):
'''
Solves nonnegative linear least-squares problem:
min_x ||C*x - d||_2^2, where x >= 0
'''
return lsqlin(C, d, reg = 0, A = None, b = None, Aeq = None, \
beq = None, lb = 0, ub = None, x0 = None, opts = opts)
if __name__ == '__main__':
# simple Testing routines
C = np.array(np.mat('''0.9501,0.7620,0.6153,0.4057;
0.2311,0.4564,0.7919,0.9354;
0.6068,0.0185,0.9218,0.9169;
0.4859,0.8214,0.7382,0.4102;
0.8912,0.4447,0.1762,0.8936'''))
sC = sparse.coo_matrix(C)
csC = scipy_sparse_to_spmatrix(sC)
A = np.array(np.mat('''0.2027,0.2721,0.7467,0.4659;
0.1987,0.1988,0.4450,0.4186;
0.6037,0.0152,0.9318,0.8462'''))
sA = sparse.coo_matrix(A)
csA = scipy_sparse_to_spmatrix(sA)
d = np.array([0.0578, 0.3528, 0.8131, 0.0098, 0.1388])
md = matrix(d)
b = np.array([0.5251, 0.2026, 0.6721])
mb = matrix(b)
lb = np.array([-0.1] * 4)
mlb = matrix(lb)
mmlb = -0.1
ub = np.array([2] * 4)
mub = matrix(ub)
mmub = 2
#solvers.options[show_progress'] = False
opts = {'show_progress': False}
for iC in [C, sC, csC]:
for iA in [A, sA, csA]:
for iD in [d, md]:
for ilb in [lb, mlb, mmlb]:
for iub in [ub, mub, mmub]:
for ib in [b, mb]:
ret = lsqlin(iC, iD, 0, iA, ib, None, None, ilb, iub, None, opts)
print ret['x'].T
print 'Should be [-1.00e-01 -1.00e-01 2.15e-01 3.50e-01]'
#test lsqnonneg
C = np.array([[0.0372, 0.2869], [0.6861, 0.7071], [0.6233, 0.6245], [0.6344, 0.6170]]);
d = np.array([0.8587, 0.1781, 0.0747, 0.8405]);
ret = lsqnonneg(C, d, {'show_progress': False})
print ret['x'].T
print 'Should be [2.5e-07; 6.93e-01]'